笑不活,最新虚拟试穿神器被网友们玩坏了。
黄院士、马斯克、奥特曼、史密斯等一众大佬衣服集体被扒。
前有老黄卸下皮衣套上糖果包装袋:
后有奥特曼大秀花臂穿CUCCI:
再有老马变成了蛛蛛侠:
好莱坞巨星史密斯也风格大变:
但说回研究本身,确实正儿八经的研究。
名为IDM–VTON,由来自韩国科学技术院和OMNIOUS.AI公司的研究团队基于扩散模型打造。
目前官方放出了demo,大伙儿可以试玩,推理代码已开源。
除了开头所展示的,抱抱脸研究员也玩的不亦乐乎,给老黄换上了专属战袍。其CEO连忙转发打趣:
我被替代了,没法和他争CEO。
看热闹的网友也是感慨,经过这么多年,终于不用再担心自己“手残”了(AI帮你搞定)。
来玩啊~
我们也赶紧上手体验了一把。demo整个页面是这样婶儿的:
操作起来也是非常简单。
首先上传人物图,可以手动或者自动选择要修改的区域。然后,上传要换的衣服。
直接点击Try-on,会自动生成掩模图和换装后的图:
上面这张自动生成的掩模把手也选进去了,所以最后生成的左手效果不好。
我们手动选取涂抹一下,同时人和衣服全部都用我们自己的图。
这次效果大伙儿觉得如何?
再来展示一波网友的试玩成品图。
DeepMind联合创始人苏莱曼穿上了微笑面具修格斯联名款T恤:
甚至不少网友真想要这件衣服。
奥特曼再次被网友当成模特:
当然也有翻车的时候,比如马斯克穿的就是山寨CUCCI。
看完效果后,接着来看IDM–VTON在技术上是如何实现的。
基于扩散模型
技术方面,IDM–VTON基于扩散模型,通过设计精细的注意力模块来提高服装图像的一致性,并生成真实的虚拟试穿图像。
模型架构大概包含三部分:
- TryonNet:主UNet,处理人物图像。
- IP-Adapter:图像提示适配器,编码服装图像的高级语义。
- GarmentNet:并行UNet,提取服装的低级特征。
在为UNet提供输入时,研究人员将人物图片的含噪声潜在特征、分割掩模、带掩蔽的图片和Densepose数据整合在一起。
他们还会为服装添加详细描述,例如[V]表示“短袖圆领T恤”。这个描述随后用作GarmentNet(例如,“一张[V]的照片”)和TryonNet(例如,“模特正在穿[V]”)的输入提示。
TryonNet和GarmentNet产生的中间特征进行了合并,随后传递至自我注意力层。研究人员只使用了来自TryonNet的输出的前半部分。这些输出与文本编码器和IP-Adapter的特征一起,通过交叉注意力层进行融合。
最终,研究人员对TryonNet和IP-Adapter模块进行了精细调整,并锁定了模型的其它部分。
实验阶段,他们使用VITON-HD数据集训练模型,并在VITON-HD、DressCode和内部收集的In-the-Wild数据集上进行评估。
IDM–VTON在定性和定量上都优于先前的方法。
IDM-VTON可以生成真实的图像并保留服装的细粒度细节。
— 完 —
本文来自微信公众号“量子位”
发评论,每天都得现金奖励!超多礼品等你来拿
登录 后,在评论区留言并审核通过后,即可获得现金奖励,奖励规则可见: 查看奖励规则