AAAI 2024 奖项陆续公布,继杰出论文奖后,今天博士论文奖也公布了。
这几天,第 38 届国际 AI 顶会 AAAI 2024 在加拿大温哥华会议中心举行。本届 AAAI 会议共有 10504 篇投稿,录取 2527 篇,录取率为 24.1%。
此前,AAAI 官方已经公布杰出论文奖(Outstanding Paper Award),共有三篇论文入选,其中不乏华人学者的身影,比如西安电子科技大学团队论文《Reliable Conflictive Multi-view Learning》。
今日,AAAI 2024 公布了第三届、2021 年 AAAI/ACM SIGAI 博士论文奖获得者及获奖论文,她是 MIT 女博士 Shibani Santurkar,获奖论文为《超越准确性的机器学习:模型泛化的特征视角》。
此外,哈佛大学博士 Bryan Wilder 获得了本届博士论文奖提名,获奖论文为《人口健康领域的人工智能:网络融合数据和算法》。
AAAI/ACM SIGAI 博士论文奖由 AAAI 和 ACM SIGAI 共同设立,旨在发现和鼓励人工智能领域的优秀博士研究和论文。作为一个年度奖项,该博士论文奖将出现在一年一度的 AAAI 会议上,获奖者将在会议上做演讲。
据了解,第一届奖项由 MIT 博士吴佳俊(现为斯坦福助理教授)获得,获奖论文题目为《学习看物理世界》(Learning to See the Physical World)。
第二届奖项由 CMU 博士、 OpenAI 研究科学家 Noam Brown 摘得,获奖论文题目为《大型对抗性不完美信息博弈的均衡发现》(Equilibrium Finding for Large Adversarial Imperfect-Information Games)。
吴佳俊(左)、Noam Brown(右)。
2021 AAAI/ACM SIGAI 博士论文奖
今年获得该奖项的论文题目为「 Machine Learning Beyond Accuracy: A Features Perspective On Model Generalization」,作者是当时在 MIT 求学的计算机科学博士 Shibani Santurkar,Santurkar 现在为斯坦福大学计算机科学博士后。
论文地址:https://dspace.mit.edu/handle/1721.1/139920
论文摘要:由于机器学习(ML)在各种基准上的突出表现,已被很多研究者应用于解决现实世界问题。然而,越来越多的证据表明模型基准性能并不能完全反映全部情况。事实证明,现有的机器学习模型非常脆弱:最突出的问题是它们对对抗性示例输入扰动的敏感性。
本文重新审视对抗性示例,将它们用作了解当前模型的窗口,该研究为为什么出现这种敏感性提供了新的视角:这是模型依赖于可预测但脆弱的输入特征的直接后果。
研究结果表明,对抗性示例实际上反映了一个更深层次的问题:当前模型在基准测试上取得成功的机制,与人类所预期的基本不一致。这引发了一个问题:我们如何构建机器学习(ML)模型,使其不仅在开发时使用的基准测试上具有泛化性,而且还能在真实世界中得到泛化?
为了回答这个问题,该研究从特征视角(features perspective)检查机器学习流程,不仅关注模型预测的标签,还关注它们使用哪些特征来进行预测。因此,在论文的第二部分,研究者开发了一套工具来更好地理解:(i)模型学习了哪些特征,(ii)为什么学习这些特征,以及(iii)如何在训练或测试时修改学到的特征。这些工具使得用户在模型开发过程中进行关键设计选择,比如如何创建数据集,以及训练和评估模型。在这些洞见的基础上,论文随后提出了对机器学习流程的具体改进,以提高模型的泛化能力。
作者介绍
个人主页:https://shibanisanturkar.com/
Shibani Santurkar 现在为斯坦福大学计算机科学专业的博士后,与 Tatsu Hashimoto、Percy Liang 和 Tengyu Ma(马腾宇) 一起进行研究。在此之前,她在麻省理工学院获得了博士学位,师从 Aleksander Madry 和 Nir Shavit 。Shibani Santurkar 在印度理工学院孟买分校获得了电气工程学士和硕士学位。此前,她还在 Google Brain 和 Vicarious 实习。
在 Google Scholar 上,她的论文引用量近万。
博士论文奖提名
本届 AAAI/ACM SIGAI 博士论文提名奖获得者为哈佛大学博士 Bryan Wilder,现为 CMU 机器学习系助理教授。研究重心为高风险社会环境中实现公平、数据驱动决策的 AI,并整合机器学习、优化和因果推理方法。
在加入 CMU 之前,他曾是哈佛大学公共卫生学院和 CMU 的施密特科学研究员项目的博士后研究员。
论文标题:AI for Population Health: Melding Data and Algorithms on Networks
论文地址:https://dash.harvard.edu/handle/1/37370083
参考链接:https://aaai.org/about-aaai/aaai-awards/aaai-acm-sigai-doctoral-dissertation-award/
文章来自于微信公众号 “机器之心”
发评论,每天都得现金奖励!超多礼品等你来拿
登录 后,在评论区留言并审核通过后,即可获得现金奖励,奖励规则可见: 查看奖励规则